Search results for "thiazolidine ring"
showing 2 items of 2 documents
Crystal structure and Hirshfeld surface analysis of (E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide
2020
The central thiazolidine ring of the title salt, C16H16N3S+center dot Br-, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N-H center dot center dot center dot Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H center dot center dot center dot H (46.4%), C center dot center dot center dot H/H center dot center dot center dot C (18.6%) and H center dot center dot center dot Br/Br center dot center dot center dot H (17.5%) interactions.
Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide
2019
TARAMAPUBMED TARAMASCOPUS TARAMAWOS In the cation of the title salt, C16H15FN3S+·Br−, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thiazolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)° with the fluorophenyl ring and the major- and minor-disorder components of the phenyl ring, respectively. The central thiazolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H...Br hydrogen bonds, which are further connected by weak C—H...Br hydrogen bonds into chains parallel to [110]. Hirshfeld surface an…